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Abstract 
 

This report summarizes the work focusing on uncertainty analysis in atmosphere models from July-

October 2011 under the Climate Science for a Sustainable Energy Future (CSSEF) project.  The 

work had several objectives:  the development of surrogate models (including kriging and stochastic 

expansion), sensitivity analysis and the identification of important input parameters, uncertainty 

quantification, and some initial calibration.   This report documents the progress to date.  
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1.  Introduction 

The Climate Science for a Sustainable Energy Future (CSSEF) program started in July 2011 as part 

of a new initiative in the Department of Energy’s Office of Science, under the Biological and 

Environmental Research Program.  The program has an overall goal to: 

 

Transform the climate model development and testing process and thereby 

accelerate the development of the Community Earth System Model’s sixth-

generation version, CESM3, scheduled to be released for predictive 

simulation in the 5 to 10 year time frame.  
 

Four research themes are addressed in the project: 

1. A focused effort for converting observational data sets into specialized, multi‐ variable 

data sets for model testing and improvement. 

2. Development of model development test beds in which model components (atmosphere, 

land, ocean, and sea ice) and sub-models can be rapidly prototyped and evaluated. 

3. Research to enhance numerical methods and computational science research focused on 

enabling climate models that use future computing architecture. 

4. Research to enhance efforts in uncertainty quantification for climate model simulations 

and predictions.[CSSEF Proposal, 2010]  

 

This work focuses on research theme #4 above.  With respect to the uncertainty quantification (UQ) 

thrust, we identified several objectives for the first year:  

 

1. Implement and test production-ready UQ tools in collaboration with test beds 

2. Begin initial advancement of adaptive sampling methods for ensemble construction 

3. Begin initial advancement of surrogate models for high-dimensional input/output data 

4. Research an efficient, scalable Bayesian calibration framework in all test beds 

5. Research AD-based optimization for calibration in the land test bed 

6. Identification of datasets for climate data UQ and evaluate data UQ methods 

 

The work addressing these objectives is being performed by several DOE laboratories, including 

Argonne, Lawrence Berkeley, Lawrence Livermore, Pacific Northwest, Los Alamos, and Sandia.  

The Sandia UQ effort is further decomposed into UQ work supporting the atmosphere 

component, UQ work supporting the land component, and “cross-cutting” UQ work which 

supports all of the components.  

 

This report only documents the UQ work at Sandia supporting the atmosphere component.   

Given the short time-frame of the FY2011 funding, we were asked to develop a set of bi-weekly 

goals.  The July 2011 version of these goals is shown below.  Note that CSSEF program is just 

beginning, and is very multi-disciplinary and multi-laboratory.  We are starting to develop 

collaborations across the laboratories.  As we work together, the work plan continues to evolve. 
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Task Planning July 2011:  Explore surrogate models and calibration techniques 

based on CAM4 ensemble and apply to CAM5 (SNL) 

  

8/1/11:  Identify global sensitivity to each parameter based on sensitivity analysis.  Identify 

range of outputs given ranges on inputs. 

 

8/15/11.  Complete runs as sparse-grid study for surrogate development.   

 

9/1/11.  Complete surrogate models of climate responses as a function of inputs. 

  

9/15/11.  Identification of parameters which provide a “good match” to the data according to 

several metrics.  

  

10/3/11.  Perform surrogate model construction and sensitivity analysis based on any CAM5 

ensemble data sets available from LLNL, PNNL, and SNL. 

  

10/17/11.   Identify differences in sensitivities between CAM4 and CAM5.   Set up CAM5 

sparse grid study.  

  

10/31/11. Paper documenting the results, evaluation, and comparison of the methods.  

  

 

The outline of the rest of the report is as follows:  Section 2 describes the CAM4 model, Section 3 

documents sensitivity analysis methods and results, Section 4 describes surrogate models, Section 5 

documents the sparse grid and polynomial chaos results, Section 6 presents some preliminary 

calibration results, and Section 7 presents a status summary and ideas for next steps.  

 

2. Model Description 

We performed sensitivity analysis on CCSM with the CAM4 atmosphere and 2-degree resolution 

with the F-AMIP configuration.  This particular configuration uses the fully active Community 

Atmosphere Model (CAM), the Community Land Model (CLM), and the CICE model for sea ice.   

The ocean model is not fully active and uses observed sea surface temperatures.  Each simulation 

runs for 14 years from January 1988 through December 2001, and results were collected from 

March 1990 through February 2001. 

 

We generated ensembles based on Latin Hypercube sampling (LHS).  We identified six input 

parameters and ten quantities of interest.  These were identified in the 2008 paper by Charles 

Jackson et al. titled "Error Reduction and Convergence in Climate Prediction" in the Journal of 

Climate. 

 

The input parameters varied for CAM4 are displayed in Table 1:  
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 Table 1: Input parameters examined in CAM4 study 

 

T 

The output quantities of interest are shown in Table 2:  

 

Output metric Description 

TREFHT Reference Height Temperature 

T Temperature 

U Zonal Wind 

PS Surface Pressure 

RELHUM Relative Humidity 

LHFLX Surface latent heat flux 

LWCF Longwave cloud forcing 

SWCF Shortwave Cloud forcing 

PRECT Total precipitation rate 

RADBAL Radiative Balance 

 Table 2:  Output quantities examined in CAM4 study 

 

3. Sensitivity Analysis 

To perform sensitivity analysis, we used two approaches:  correlation analysis and variance-based 

decomposition.  These are described below along with results. 

 

3.1 Correlation Analysis 

3.1.1 Description 

Correlation refers to a statistical relationship between two random variables or two sets of data.   

In analysis of computer experiments, where an ensemble of simulation runs have been performed 

according to some type of experimental design, we have a set of results.   The convention is to have 

each “sample” or run of the simulation be written on a separate row.  For example, if N simulation 

runs were performed, with D inputs and P outputs, the resulting ensemble matrix would be of 

Parameter  Description Default Value Range 

RHMINL Low cloud critical relative humidity 0.91 [0.8, 0.95] 

RHMINH High cloud critical relative humidity 0.8 [0.6, 0.9] 

ALFA Initial cloud downdraft mass flux 0.1 [0.05, 0.6] 

TAU Consumption rate of CAPE 3.6E2 [1.8E2, 2.88E3] 

KE Environmental air entrainment rate  3.5E-3 [3.0E-3, 6.0E-3] 

C0 Precipitation efficiency 1.0E-6 [3.0E-6, 10.0E-6] 
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dimension N*(D+P).   In this situation, we can perform a correlation analysis on the entire matrix.  

However, often the correlations between inputs and inputs are not interesting, especially if the 

sample design has been constructed so that the inputs are independent and thus the correlations 

between inputs are near zero.  Likewise, the correlations between outputs and outputs may not be 

interesting, except in the case where some of the outputs are very strongly correlated and thus 

perhaps one can reduce the analysis by only focusing on a subset of outputs.  The main focus of 

correlation analysis of computer experiments is the correlation between inputs and outputs.  

 

There are several types of correlations that can be calculated:  simple, rank, and partial.  Simple 

correlation measures the strength and direction of a linear relationship between variables.  Simple 

correlation refers to correlations performed on the actual input and output data, calculated by the 

Pearson correlation coefficient.  For example, the Pearson correlation between input X and output Y 

is given by (X,Y) [Larsen and Marx]:  

 

 

 

 

 

 

The Pearson correlation is +1 in the case of a perfect positive (increasing) linear relationship, −1 in 

the case of a perfect decreasing (negative) linear relationship,  and some value between −1 and 1 in 

all other cases.  A simple correlation near zero means there is less of a relationship between the 

variables: they are close to being uncorrelated.  Figure 3.1 shows some example correlation patterns 

and corresponding correlation coefficients.  Note that if two variables are independent, they will 

have zero correlation but the converse is not true:  they may have zero or near-zero correlation but 

show a strong type of relationship (e.g. see the last row of Figure 3.1). 

 

Figure 3.1:  Example Correlation Relationships 

 

Rank correlations refer to correlations performed on the ranks of the data. Ranks are obtained by 

replacing the actual data by the ranked values, which are obtained by ordering the data in ascending 

order. For example, the smallest value in a set of input samples would be given a rank 1, the next 
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smallest value a rank 2, etc. Rank correlations are useful when some of the inputs and outputs differ 

greatly in magnitude: then it is easier to compare if the smallest ranked input sample is correlated 

with the smallest ranked output, for example.  A rank correlation coefficient is also called a 

Spearman correlation.  Partial correlation coefficients are similar to simple correlations, but a partial 

correlation coefficient between two variables measures their correlation while adjusting for the 

effects of the other variables. For example, if one has a problem with two highly correlated inputs 

and one output, the correlation of the second input and the output may be very low after accounting 

for the effect of the first input. 

 

3.1.2 Results 

We performed simple correlation analysis using Pearson correlation coefficients on 1019 samples 

generated from CAM4.  Note that these samples were generated using a Latin Hypercube sampling 

strategy called Binning Optimal Symmetric LHS as explained in Section 6.1.  The overall 

correlation table is shown in Table 3.  Note that Table 3 presents the correlation results for output 

averages computed over a band +/- 30 around the equator.  

 

 
 

Table 3:  Correlation Analysis for CAM4:  Results calculated over +/-30 Equatorial Band  

 Rows are Outputs, Columns are Inputs 

 

In Table 3, a yellow cell represents a correlation coefficient whose absolute value is between 0.2 

and 0.5.  A red cell represents a correlation coefficient whose absolute value is between 0.5 and 1.0.  

These correspond to correlations that are considered significant (yellow) and strongly significant 

(red).  To test for significance, we can use the same t-test that is used to detect if the slope 

coefficient in a simple regression model is nonzero.  For this large sample size, one can reject the 

null hypothesis that the correlation coefficient is zero even for fairly small correlation values 

because of the large number of samples.  A correlation coefficient of 0.2 or greater does lead to a 

statement that the null hypothesis of zero correlation is rejected with high confidence (=0.001).  In 

this data set, there were very low correlations (near zero) amongst all of the inputs and so we did not 

show these correlations in Table 3.  The low correlation between inputs is to be expected since the 

samples have been designed so that the inputs are independent.  We did see correlations amongst 

the outputs, but these were not included for space reasons.   

RHMINL RHMINH ALFA TAU CZERO KE

TREFHT 0.33 -0.06 -0.05 0.83 -0.04 0.04

T 0.58 -0.46 -0.35 -0.39 -0.05 0.19

U -0.17 -0.37 0.07 0.82 -0.01 0.02

PS 0.29 -0.10 0.01 0.62 -0.04 0.03

RELHUM 0.05 0.58 -0.20 -0.74 -0.03 0.15

LHFLX -0.30 0.31 0.10 0.82 0.01 -0.17

LWCF -0.23 -0.72 -0.14 -0.59 -0.02 0.12

SWCF 0.92 0.31 0.04 0.21 -0.01 -0.03

PRECT -0.40 0.38 0.05 0.74 0.03 -0.22

RADBAL 0.97 0.16 -0.03 -0.05 -0.02 0.01
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Scatterplots of the samples used to create the correlations in Table 3 are shown in Figure 3.2.  Note 

that the scatterplots show the correlation relationships in Table 3.  For example, we see the strong 

positive correlation of RHMINL and RADBAL (lower left cell), with a correlation coefficient of 

0.97, and we see the strong correlations between TAU and many of the outputs.  We also note that 

CZERO is not strongly correlated with any output. 

 

Figure 3.2:  Scatterplot of CAM4 Inputs (x-axis) and Outputs (y-axis) 

 

We performed the same analysis, but restricting the annual responses to be calculated over the 

Southwest region of the United States instead of the +/-30 equatorial band.  The correlation results 

are shown in Table 4. 
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Table 4:  Correlation Analysis for CAM4:  Results calculated over the Southwest U.S.  

 Rows are Outputs, Columns are Inputs 

 

Note that many of the correlations are similar between Tables 3 and 4.  However, the Southwest 

results in Table 4 show somewhat stronger correlations of KE with several of the outputs and 

weaker correlations of TAU with several of the outputs.  

 

Finally, we restricted the Southwest results to only look at these outputs for the summer month 

average (J-J-A).  The correlations in Tables 3 and 4 are calculated over the entire year, but the 

averages in Table 5 show the correlations for the Southwest summer months:  

 

 
Table 5:  Correlation Analysis for CAM4:  Results calculated over the Southwest U.S. 

Summer Average only.    Rows are Outputs, Columns are Inputs 

 

Note that the correlations between inputs and summer averages shown in Table 5 are similar to the 

correlations between inputs and annual averages shown in Table 4, but again there are some 

differences in the correlations and the importance of some of the input/output relationships.  For 

example, the correlation between RHMINH and Relative Humidity (RELHUM) is significantly 

smaller in Table 5 (.47) than it is in Table 4 (0.8).   

 

Finally, we looked at the correlations obtained when we ran surrogate models for the CAM4 

outputs.   There are several types of surrogate models (also called emulators or response surface 

RHMINL RHMINH ALFA TAU CZERO KE

TREFHT 0.54 0.25 -0.30 -0.53 -0.01 0.17

T 0.51 -0.10 -0.22 -0.70 -0.04 0.20

U 0.05 0.04 -0.18 -0.25 -0.07 -0.05

PS -0.03 -0.55 -0.21 -0.61 0.02 0.24

RELHUM -0.24 0.80 -0.04 0.09 -0.05 0.27

LHFLX -0.32 0.01 0.18 0.47 0.01 -0.44

LWCF -0.14 -0.94 -0.03 -0.05 -0.07 0.20

SWCF 0.36 0.86 -0.14 -0.22 0.01 -0.16

PRECT -0.29 -0.05 0.23 0.58 0.01 -0.33

RADBAL 0.97 0.16 -0.03 -0.05 -0.02 0.01

RHMINL RHMINH ALFA TAU CZERO KE

TREFHT 0.63 0.54 -0.28 -0.23 -0.06 0.03

T 0.66 0.32 -0.24 -0.51 -0.06 0.00

U -0.33 -0.50 -0.10 -0.64 0.01 0.15

PS 0.04 -0.49 0.15 0.55 0.02 0.25

RELHUM -0.10 0.47 0.08 0.47 -0.08 0.32

LHFLX -0.36 -0.03 0.12 0.27 0.04 -0.58

LWCF -0.04 -0.86 0.03 0.22 -0.16 0.21

SWCF 0.21 0.80 -0.18 -0.40 0.02 -0.20

PRECT -0.24 -0.03 0.15 0.41 0.03 -0.51

RADBAL 0.97 0.15 -0.03 -0.05 -0.02 0.01
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models) that can be used:  neural networks, splines, polynomial regression, etc.  We used a multi-

variate adaptive regression spline (MARS) as a surrogate model for each output.  Another type of 

surrogate that we investigated is called a Gaussian process model; this is described in Section 4.1.  

The MARS implementation we used is documented in the DAKOTA manual (Adams et al.)  

 

For the purposes of this discussion, we just want to demonstrate that the correlations obtained when 

using surrogate models are similar to the correlations we obtained from the original CAM4 runs as 

shown in Table 3.  Table 6 shows a similar result, but this time the correlations are based on 1000 

samples of surrogate models of the outputs.  Comparing Table 3 and Table 6, we see that the 

surrogates generally are able to capture the strong correlations.  For example, the correlation 

between RHMINL and RADBAL is 0.96 in Table 6 vs. 0.97 in Table 3.  Similarly, the correlation 

between TAU and TREFHT is identical (0.83) in both tables.   There are some differences, 

primarily in the variables that are of lesser importance.  The MARS surrogate does not pick up any 

significant correlations between ALFA, CZERO, or KE and any of the outputs.  However, Table 3 

indicates two:  a correlation between ALFA and T  of -0.35 and a correlation between KE and 

PRECT of -0.22.  This indicates that the surrogates may not capture the less significant relationships 

as accurately.  One important thing to notice is that the signs are correct:  if an input and output is 

positively correlated in Table 3, it also is in Table 6, and similarly for negative correlations.  This 

behavior is important for surrogates to capture correctly.  We will say more about the goodness of 

surrogates in Sections 4 and 6.  For the purposes of this discussion, we wanted to demonstrate that it 

is possible to perform correlation analysis on surrogates, and the signs of significant correlations are 

maintained along with a relative ranking.  

 

 
Table 6:  Correlation Analysis for CAM4 based on Surrogates: 

Results calculated over +/-30 Equatorial Band  

 Rows are Outputs, Columns are Inputs 

 

RHMINL RHMINH ALFA TAU CZERO KE

TREFHT 0.43 -0.12 0.02 0.83 -0.03 0.01

T 0.80 -0.44 -0.01 -0.35 -0.08 0.00

U -0.21 -0.30 0.01 0.85 0.02 0.01

PS 0.24 -0.32 0.01 0.73 -0.03 0.02

RELHUM 0.10 0.74 -0.01 -0.56 -0.15 0.02

LHFLX -0.47 0.45 0.01 0.72 0.02 -0.01

LWCF -0.21 -0.83 -0.02 -0.44 -0.07 -0.01

SWCF 0.91 0.27 -0.01 0.02 0.19 0.01

PRECT -0.65 0.55 0.01 0.44 0.07 -0.01

RADBAL 0.96 0.14 0.01 -0.20 -0.02 0.01
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3.2 Variance-based Decomposition  

3.2.1 Description 

The correlation coefficients described in Section 3.1 only detect linearity or monotonicity.   In 

contrast, the variance-based indices (referred to as Sobol´ indices) are not limited in this way. The 

variance-based indices identify the fraction of the variance in the output that can be attributed to an 

individual variable alone or with interaction effects [Sobol’, Saltelli et al. 2000].  There are two 

classes of variance-based sensitivity indices:  main effects and total effects.   The main effects 

indices, Si, identify the fraction of uncertainty in the output Y attributed to input Xi alone.  The total 

effects indices, Ti, correspond to the fraction of the uncertainty in output Y attributed to Xi and its 

interactions with other variables.   These sensitivity indices are represented as:  

 

            (1) 

   

 

 

            (2)  

 

 

 

where Var(·) is the variance, E(·) is the expected value, and E(Y|Xi) is the expected value of Y 

conditioned on Xi.  Var(Y|X-i) is the variance of Y conditioned on all the inputs except Xi.  These 

indices involve multidimensional integrals that, in practice, are evaluated approximately.  Note that 

Si varies between 0 and 1.  Values close to one mean that the uncertainty in variable Xi is very 

significant in contributing to the uncertainty in output Y.   The sum of Si over all variables i must 

equal to one.  However, there are not the same restrictions on Ti.   The values of Ti are greater than 

or equal to zero, but are not upper-bounded by one and their sum over all variables does not add to 

one. 

 

The team led by Andrea Saltelli at the European Research Commission is generally credited with 

popularizing the use of variance-based indices for sensitivity analysis.  In the past 10-15 years, 

several approaches have been developed for calculating the Sobol’ sensitivity indices. The recent 

paper by [Saltelli et al., 2010] provides a detailed comparison of sampling approaches, with some 

comments about the relationship between the estimators and the sampling methods used. 

 

Ideally, a full factorial sample would be performed with m samples taken in each of d input 

dimensions.  Then, the integrals in the Sobol’ formulas can easily be calculated given n=m
d
 

samples.   For example, when calculating the numerator in Eq. 1, we calculate the inner expectation 

term m times, each time averaging over the remaining m
d-1

 points in the other dimensions. We 

calculate: E(Y|Xi = xim) for each of the m points in dimension i, then take the variance of m expected 

values to obtain the numerator for the main effects indices. The total effects indices are calculated in 

a similar manner.  
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The full factorial approach requires n = m
d
 samples, which may not be practical when each sample 

is an evaluation of a computationally costly function.  Typically, the cost is reduced by sampling the 

inputs using Latin Hypercube or quasi-Monte Carlo sampling, rather than considering all possible 

combinations of input values.  We generate two independent sets of samples of size n; in each set all 

the d inputs are varied. Then, we create d more sets of samples of size n by taking a column from 

one of the original two sample sets and replacing it by the same column in the other sample set. This 

column swap-out procedure is described in [Saltelli, 2004]. The total number of samples is (2+d)n, 

which requires far fewer function evaluations than the full factorial approach in most situations. 

 

We use a recent calculation [Saltelli et al. 2010] for the (2+d)n samples that has been improved to 

remove bias and better capture interaction effects.  The actual formulas we used are described in 

[Weirs et al., 2011]; we describe them here for completeness.  Some notation: if we denote the 

original sample matrices as A and B, we denote by        the matrix A except for the i
th
 column which 

has been taken from matrix B. Similarly,          is the matrix B except for the i
th 

column which has 

been taken from matrix A. We define C as the matrix with 2n rows and d columns obtained by 

appending B to A. C is used in some formulas to estimate the total variance, as all rows of C are 

independent.  The mean value is denoted by ⟨·⟩.  The formulas to calculate the indices are given 

below:  

 

 
 

Finally, we wish to mention that these sensitivity indices may be calculated when stochastic 

expansion methods such as polynomial chaos or stochastic collocation are used to propagate the 

uncertainty from inputs to outputs instead of sampling methods.  When using stochastic expansion 

methods, the HDMF (high dimensional model representation) may be exploited to analytically 

obtain the sensitivity indices.  That is, the sensitivity indices Si and Ti can be calculated as analytic 

functions of the coefficients of the expansion.  This is a very nice property, since one does not have 

to take additional samples beyond the ones used to construct the expansion initially.  The 

calculations of the sensitivity indices based on polynomial chaos are derived in [Sudret, 2008]; the 

sensitivity indices based on stochastic collocation are derived in [Tang et al., 2010].  We present the 

results of variance-based decomposition using polynomial chaos and stochastic collocation in 

Section 5. 
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4. Surrogate Models 

For this project, we looked at two classes of surrogate models (also referred to as meta-models or 

response surface models).  The first class is typically constructed over a set of random sample points 

such as a set of Monte Carlo or LHS samples, and includes surrogates such as Gaussian process 

models, splines, and regression models.  The second class is typically constructed over samples 

constructed using a particular quadrature scheme.  This class includes stochastic expansion 

methods, specifically polynomial chaos expansions and stochastic collocation.  

 

4.1 Gaussian Process Models 

Gaussian Process models are used in response surface modeling, especially response surfaces which 

“emulate” complex computer codes.  Gaussian processes have also been widely used for estimation 

and prediction in geostatistics and similar spatial statistics applications [Cressie].  The recent book 

by Rasmussen and Williams provides a good overview of Gaussian process models.  

 

A Gaussian process (GP) is defined as follows:  A stochastic process is a collection of random 

variables {Y(x) | x  X} indexed by a set X (in most cases, X is 
d
, where d is the number of 

inputs).   The stochastic process is defined by giving the joint probability distribution for every finite 

subset of variables Y(x1), ..Y(xk).  A Gaussian process is a stochastic process for which any finite 

set of Y-variables has a joint multivariate Gaussian distribution.  A GP is fully specified by its mean 

function (x) = E[Y(x)] and its covariance function C(x, x′).  The basic steps in using a GP are:  

 

1. Define the mean function.   The mean function can be any type of function.  Often the mean 

is taken to be zero or a constant, but this is not necessary.  A common representation, for 

example in a regression model, is that y(x) = j wjj(x) = w
T
( x), where {j} is a set of 

fixed basis functions and w is a vector of weights.   

 

2. Define the covariance.  There are many different types of covariance functions that can be 

used (squared exponential, Matern, cubic, etc.).  At this stage, we shall focus on stationary 

covariance functions where C(x, x′) is a function of the distance (x - x′) and is invariant to 

shifts of the origin in the input space.  A commonly-used covariance function is:  

 

})'(exp{)',(
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This covariance function involves the product of d squared-exponential covariance functions 

with different length-scales on each dimension.  The form of this covariance function 

captures the idea that nearby inputs have highly correlated outputs.  

 

3. Perform the “prediction” calculations.  Given a set of n input data points {x1, x 2, .. xn} and a 

set of associated observed responses or “targets” {z1, z2, .. zn}, we use the GP to predict the 

target zn+1 at a new input point xn+1.   The target is usually represented as the sum of the 
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“true” response, y, plus an error term:  zi = yi + i, where i is a zero mean Gaussian random 

variable with constant variance 
2
.   If C is the n×n covariance matrix with entries C(xi, xj), 

then the prior distribution on the targets zi is N(0,C).  The distribution of the predicted term 

zn+1 is conditional on the data {z1, z2, .. zn}.  It is Gaussian with the following mean and 

variance:  

 

                     E[zn+1 | z1, z2, .. zn ]  = k
T
C

-1
z       

   

Var[zn+1 | z1,…, zn] =  C(xn+1, xn+1) - k
T
C

-1
k                 

 

where k
 
is the vector of covariances between the n known targets and the new n+1 data 

point: k =  (C(x1, xn+1), ….. C(xn, xn+1))
 T

,  C is the n * n covariance matrix of the original 

data, and z is the n×1 vector of target values.   

 

The equations for the mean and variance of the predictive distribution for zn+1 both require 

the inversion of C, an n×n matrix.  In general, this is a O(n
3
) operation.  Also, the covariance 

matrix may be near singular.   Several approaches have been developed to deal both with the 

ill-conditioning and with large data sets (e.g. greater than 1000 data points). – KEITH – give 

references. 

 

Steps 1-3 give the general framework for defining a Gaussian process and using it for 

prediction.  However, the length scale parameters in the covariance matrix must be calculated to 

perform the prediction in equations 2 and 3.  There are two main approaches.  One is to use 

maximum likelihood estimation, where one maximizes the likelihood function.  This results in 

point estimates of the covariance parameters.  The other approach is to use Monte Carlo Markov 

Chain (MCMC) sampling to generate posterior distributions on the hyperparameters which 

govern the covariance function (and the mean function).   The assumption of zero mean GPs is 

often made, so the Bayesian updating only involves hyperparameters governing the covariance 

function.  Since these may be quite complex, one usually still needs a MCMC sampling method 

to generate the posterior.  We use a maximum likelihood method (more details on the 

correlation length bounding, treatment of the condition number, etc.) 

4.2 Polynomial Chaos Expansion 

 

Polynomial chaos is a stochastic expansion method whereby the output response is modeled as a 

function of the input random variables using a carefully chosen set of polynomials.  These 

polynomials are usually chosen according the Weiner-Askey scheme that provides an orthogonal 

basis with respect to the probability density function for the input random variables.  Orthogonal 

polynomials can be generated numerically for arbitrary PDF’s, but this is beyond the scope of this 

report. 

 

In general, the polynomial chaos expansion for a response R has the form, 
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where the number of random variables and the order of the expansion are unbounded.  This 

expression is usually written in terms of the order-based indexing, 

 

 

 

 

In practice, both the number of random variables and the order of the expansion are truncated 

yielding an expansion of the form, 

 

 

4.3  Stochastic Collocation  

Similar to PCE, stochastic collocation methods construct a polynomial approximation of the output 

response.  The key difference is that the stochastic collocation approximation is a multidimensional 

Lagrange interpolant based on a chosen set of collocation points.  These points may be based on 

either tensor product grids or on the Smolyak sparse grids discussed in the next section. 

5. Sparse Grid 

5.1 Description 

If the stochastic dimension is larger than 4 or 5, sparse grids are preferable over tensor product grids 

since sparse grids use a drastically reduced number of evaluation points while maintaining a high 

level of accuracy [Smolyak 1963, Xiu et al 2005].  Sparse grids use linear combinations of the 

tensor product rules with the property that only products with a small number of points are retained.  

An example of the reduction in the number of points versus a tensor product grid is shown in Figure 

5.1. 

 

 

 
Figure 5.1: Comparison of a tensor product grid in 2D using Clenshaw-Curtis points (left) 

and a sparse grid (right). 
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Several variations of sparse grids exist depending on whether the one-dimensional quadrature 

rules are nested and the growth rate used.  Anisotropic sparse grids can also be constructed using 

either a priori information regarding the significant dimensions, or using a posteriori error 

indicators [Nobile et al 2008]. 

 

The sparse grid is usually used as a collocation method, but the evaluation points can also be 

used as a quadrature rule to evaluate the integrals in a stochastic spectral construction of a PCE.  

Unfortunately, this approach performs much worse than stochastic collocation.  Subsequently, 

we use an alternative algorithm to compute separate tensor polynomial chaos expansions for each 

of the underlying tensor quadrature grids and then sum them using the Smolyak combinatorial 

coefficient.  In this case, the two approaches give identical polynomial representations 

[Constantine et al 2011]. 

5.2 Results  

We consider the parameters in Table 1 to be uniform random variables and construct a level 2 

sparse grid over the 6-dimensional parameter space.  This gives a total of 97 evaluation points.  

We then compare the PCE with the Latin Hypercube study in Section 3.1 using 1147 

evaluations.  The PCE and stochastic collocation results were nearly identical in all cases, so we 

only report the PCE results.  In Figures 5.2-5.5, we plot the means of the reference temperature 

and the total precipitation rate computed over the length of the simulation and over the 6-

dimensional parameter space using the LHS study and the polynomial chaos expansion.  

 

 
Figure 5.2: Mean of the reference temperature using LHS study. 
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Figure 5.3: Mean of the reference temperature using polynomial chaos expansion. 

 

 

 
Figure 5.4: Mean of the total precipitation rate using LHS study. 
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Figure 5.5: Mean of the total precipitation rate using the polynomial chaos expansion. 

 

 

 

5.2.1 Comparison of Cumulative Density Functions 

For the sake of space, we compare only the reference temperature (TREFHT), the relative 

humidity (RELHUM), and the precipitation rate (PRECT).  We compute a CDF from the 

polynomial chaos expansion by taking 10,000 samples of the input random variables according 

to the joint distribution and interpolating the PCE at these sample points.  In Figure 5.6, we show 

the cumulative density functions (CDFs) for each of these quantities averaged the band within 30 

degrees of the equator and over the entire simulation time.  We note that there is excellent 

agreement between the CDFs.  
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Figure 5.6: Comparison of the cumulative density functions for TREFHT, RELHUM, and 

PRECT calculated over +/-30 equatorial band using a PCE expansion and a LHS study. 

 

Next, we compare the CDF’s for same three outputs averaged over the latitude range 30:40 and the 

longitude range 245:265 corresponding to the Southwest United States.  In Figure 5.7, we see that 

the CDFs obtained by sampling the polynomial chaos expansion do not match the CDFs from the 

LHS study as well as in Figure 5.2.  The output ranges and means are in relatively good agreement, 

but some discrepancy exists between the overall structures of the CDFs. 

 

 
Figure 5.7: Comparison of the cumulative density functions for TREFHT, RELHUM, and 

PRECT over the Southwest United States using a PCE expansion and a LHS study. 

 

Lastly, we compare the CDFs for each of these quantities averaged over the Southwest United 

States during only the summer months (June-August).  In Figure 5.8, we see that the differences 

between the CDFs for the relative humidity computed from the polynomial chaos expansion and 
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the LHS study are comparable to the differences in Figure 5.7.  On the other hand, there are 

significant differences between the CDFs for the reference temperature and the precipitation rate 

computed from the PCE and the LHS study.  This is a clear indication that these particular spatial 

and temporal averages are more difficult to approximate with a polynomial chaos expansion due 

to the inherent local variability.  This is consistent with the notion that regional climate 

information is more difficult to predict that global information. 

 

 
Figure 5.8: Comparison of the cumulative density functions for TREFHT, RELHUM, and 

PRECT over the summer in the Southwest U.S. using a PCE expansion and a LHS study. 

 

5.2.2 Decay of Polynomial Chaos Coefficients 

Section 5.2.1 gives some indication whether the statistical properties of the outputs quantities of 

interest can be estimated using the polynomial chaos approximation.  Another objective of this 

study is to determine which quantities of interest from climate simulations can be approximated by 

global polynomials.  One indication of this is whether the polynomial chaos coefficients decay as 

the polynomial order increases.   In Figures 5.9-5.11, we plot the magnitude of the polynomial 

chaos coefficients for each of the three quantities of interest (TREFHT, RELHUM, and PRECT) 

averaged over the three spatial and temporal regions.  In all nine cases, the lowest order coefficient, 

corresponding to the mean, is much larger than the other coefficients and we omit this term from the 

plots to more effectively show the decay, or lack thereof, in the coefficients as the polynomial order 

increases. 

 

In Figure 5.9, we plot the magnitude of the polynomial chaos coefficients for the reference 

temperature, the relative humidity, and the precipitation rate averaged over the +/-30 equatorial 

band and over the year. We see that there is a clear decay in the coefficients for the reference 

temperature and precipitation rate and very little decay in the coefficients for the relative humidity. 

This indicates that a low-order polynomial surrogate model may be a sufficiently accurate 

description of the reference temperature and precipitation rate, but there is much more variability in 

the relative humidity and higher order polynomials may be required to accurately resolve this field. 
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Figure 5.9: Magnitude of the polynomial chaos coefficients for TREFHT (left), RELHUM 

(middle) and PRECT (right) calculated over +/-30 equatorial band and averaged over the 

year. 

 

In Figure 5.10, we plot the magnitude of the polynomial chaos coefficients for the reference 

temperature, the relative humidity, and the precipitation rate averaged over the southwest United 

States and over the year.  We observe a slight decay in the coefficients for the reference 

temperature, but less consistent behavior for the relative humidity and precipitation rate.   This 

indicates that higher order polynomials may be required to accurately resolve regional quantities of 

interest. 

 

 

 
Figure 5.10: Magnitude of the polynomial chaos coefficients for TREFHT (left), RELHUM 

(middle) and PRECT (right) averaged over the Southwest United States and over the year.  

 

Finally, in Figure 5.11 we plot the magnitude of the polynomial chaos coefficients for the 

reference temperature, the precipitation rate, and the relative humidity averaged over the 

southwest United States and over the summer months (June-August).  We see almost no decay in 

the coefficients for the reference temperature and the precipitation rate.  On the other hand, there 

is a clear decay in the coefficients for the relative humidity.  This agrees with the observation 

that the relative humidity during the summer in the southwest is fairly predictable. 
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Figure 5.11: Magnitude of the polynomial chaos coefficients for TREFHT (left), RELHUM 

(middle) and PRECT (right) averaged over the Southwest U.S. and over the summer 

months.  

 

5.2.3 Sensitivity Analysis 

In this section, we use the polynomial chaos expansion to generate analytic approximations of the 

global sensitivities in terms of the Sobol indices.  We compare these results with the sensitivity 

analysis in Section 3.1.2. 

 

In Table 7, we present the Sobol indices for the averages computed over the +/-30 equatorial band 

and over the year.  Similar to Section 3.1.2, a yellow cell represents a Sobol coefficient between 0.2 

and 0.5 and a red cell represents a Sobol index between 0.5 and 1.0.  Comparing Tables 3 and 7, we 

see that the Sobol indices identify the strong influence of TAU on many of the outputs and some of 

the dependencies between RHMINL and RHMINH and the outputs. 

 

  RHMINL RHMINH ALFA TAU CZERO KE 

TREFHT 0.10 0.03 0.01 0.83 0.01 0.00 
T 0.23 0.24 0.26 0.15 0.04 0.01 
U 0.05 0.17 0.03 0.55 0.04 0.06 
PS 0.08 0.12 0.08 0.35 0.07 0.04 
RELHUM 0.00 0.28 0.03 0.63 0.00 0.04 
LHFLX 0.13 0.12 0.01 0.70 0.00 0.02 
LWCF 0.03 0.53 0.03 0.40 0.00 0.01 
SWCF 0.85 0.08 0.00 0.04 0.00 0.01 
PRECT 0.21 0.13 0.03 0.53 0.02 0.04 
RADBAL 0.95 0.02 0.00 0.02 0.00 0.00 

Table 7:  Sobol Indices Computed from a Polynomial Chaos Expansion for Averages Over +/-

30 Equatorial Band and Over the Year 

 

In Table 8, we present the Sobol indices for the averages computed over the southwest United and 

State and over the year.  We observe that RADBAL still depends strongly on RHMINL, and some 

of the dependencies are also indicated, but many of the significant and strongly significant 

correlations in Table 5 are not captured by the Sobol indices. 
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  RHMINL RHMINH ALFA TAU CZERO KE 

TREFHT 0.01 0.13 0.23 0.46 0.01 0.00 
T 0.01 0.02 0.13 0.63 0.09 0.00 
U 0.34 0.03 0.10 0.14 0.08 0.11 
PS 0.12 0.09 0.49 0.03 0.05 0.03 
RELHUM 0.05 0.18 0.05 0.13 0.24 0.23 
LHFLX 0.01 0.01 0.09 0.11 0.07 0.28 
LWCF 0.06 0.32 0.03 0.09 0.19 0.21 
SWCF 0.03 0.46 0.03 0.05 0.07 0.37 
PRECT 0.05 0.02 0.04 0.04 0.06 0.37 
RADBAL 0.95 0.02 0.00 0.02 0.00 0.01 

Table 8:  Sobol Indices Computed from a Polynomial Chaos Expansion for Averages Over the 

Southwest United States and Over the Year 

 

In Table 9, we present the analogous results for the averages over the southwest United States over 

the summer months.  As in the previous case, the Sobol indices indicate a strong influence of 

RHMINL on RADBAL.  However, most of the other significant correlations in Table 5 are not 

reflected by the magnitude of the Sobol indices. 

 

  RHMINL RHMINH ALFA TAU CZERO KE 

TREFHT 0.11 0.11 0.26 0.04 0.01 0.16 
T 0.05 0.04 0.13 0.18 0.15 0.18 
U 0.02 0.26 0.21 0.18 0.04 0.02 

PS 0.31 0.09 0.11 0.06 0.13 0.09 
RELHUM 0.08 0.07 0.05 0.08 0.18 0.33 
LHFLX 0.20 0.00 0.07 0.18 0.05 0.10 
LWCF 0.07 0.42 0.03 0.02 0.14 0.19 
SWCF 0.05 0.50 0.02 0.03 0.05 0.21 
PRECT 0.34 0.02 0.07 0.17 0.03 0.04 
RADBAL 0.94 0.02 0.01 0.02 0.00 0.01 

Table 9:  Sobol Indices Computed from a Polynomial Chaos Expansion for Averages Over the 

Southwest United States and Over the Summer 
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6. Calibration 

Calibration goes by several names:  data assimilation, parameter estimation, inverse problems, 

parameter identification.  In this work we will use calibration to mean the adjustment of model 

parameters (denoted by ) to maximize the agreement of the model predictions with experimental 

data.  

 

A general formulation of the calibration problem is given by the framework of nonlinear least 

squares.  The nonlinear model of the response y as a function of the n-dimensional inputs x is 

given as:    

 );( θxfy  

where f is the nonlinear model,  is a vector of parameters to be calibrated, and  is a random error 

term.  We assume that 0][E   and 2][V  ar and the error terms are independent and 

identically distributed (iid).  Usually y is a function of x but this dependence is often implicit and 

y(x) simply written as y.  Given observations of the response y corresponding to the independent 

variables x, the goal of nonlinear regression is to find the optimal values of  to minimize the error 

sum of squares function S(), also referred to as SSE: 
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where )(θiR are the residual terms. Nonlinear regression employs an optimization algorithm to 

find the least squares estimator θ̂  of the true minimum *; a process that is often difficult [Seber 

and Wild].  Derivative-based nonlinear least squares optimization algorithms exploit the 

structure of such a sum of squares objective function. If S() is differentiated twice, terms of 

residual )(θiR , )(θ"

iR , and 
2)]([ θ

'

iR result. By assuming that the residuals )(θiR  are close to 

zero near the solution, the Hessian matrix of second derivatives of S() can be approximated 

using only first derivatives of )(θiR . 

 

Cost functionals such as S() are often augmented by adding a regularization term to make the 

optimization problem better-conditioned (e.g. if the system of residual equations over- or under-

determined).  Depending on the nature of the problem, the regularization terms can be based on a 

statistical model or can involve functions of the underlying systems of equations directly.  

Tikhonov regularization and its variants are a common approach used in this context.  

 

For the climate problem, we had a different issue:  it is very difficult to find parameters which result 

in a good model “match” with respect to the 10 quantities of interest shown in Table 2.  It often can 

be a challenging problem to find parameters which result in calibrated parameters for just one 

quantity of interest.  To address the issue of these disparate responses, we decided not to use a 

weighted least squares approach.   A weighted least squares approach will try to find one solution 

that minimizes a weighted sum of residuals (e.g. in this case, 10 sets of residuals, one for each 

objective function).    To perform any sensitivity analysis, it is necessary to re-weight the sum of the 

individual residuals and re-run the optimization to see how strongly the set of optimal parameters 

depends on the weighting.  To avoid this issue, we instead use an approach based on Pareto 
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optimization, which calculates a Pareto optimal set of solutions all within one optimization 

procedure.  The Pareto optimization yields sets of parameters which explicitly show the tradeoff 

between matching well on response vs. another.  This approach is described below in Section 6.1. 

 

6.1 Pareto Optimization and the MOGA algorithm 

Pareto optimization is used for multi-objective problems.  These are problems which have 

objective functions that are vectors, not scalars.  Formally, a multi-objective optimization 

problem can be specified as:  

 

 

 

 

 

 

 

 

 

Where x is a vector of d input parameters, there are k scalar objectives denoted by fj(x) where j = 

1…k, )(xF is the overall vector objective, and the problem may have equality constraints h(x) 

and/or inequality constraints g(x) as well as bound constraints on the parameters. 

 

In a multi-objective problem, there are two or more objectives that you wish to optimize 

simultaneously.  The solution is the set of all points that satisfy the Pareto optimality criterion with 

respect to the entire decision space. This optimality definition is defined in [Coello Coello et al.].  

A feasible vector x* is Pareto optimal if there exists no other feasible vector x which would 

decrease (improve) some objective without causing a simultaneous increase (worsening) in at least 

one other objective.   The Pareto frontier is composed of all solutions which are Pareto optimal.  A 

typical looking Pareto frontier is shown below in Figure 6.1:   In this figure, the blue line shows the 

Pareto frontier:  all points along this curve are Pareto optimal.  The goal is to be in the lower left 

corner (e.g. minimize both Objective 1 and Objective 2).  Note that the red circle shows a solution 

which is NOT Pareto optimal; it is called a dominated solution.   
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Figure 6.1:  Pareto frontier 

 

To solve for the Pareto frontier, we use a multi-objective genetic algorithm (MOGA) that is 

implemented in the DAKOTA framework [Adams et al. 2010].  MOGA was developed by John 

Eddy at Sandia National Laboratories.   Genetic algorithms are effective at evolving and tracking 

populations of solutions, so it is easy to adapt these to keep populations of optimal solutions 

according to the Pareto criterion.   Genetic algorithms work by initializing a population of solutions, 

evaluating their fitness, then selecting “good” members of the population to crossover and mutation 

and evolve into the next generation [Goldberg].  Over time, genetic algorithms are effective at 

producing globally optimal solutions.   

 

MOGA was built with some typical genetic algorithm controls:  it has a set of initialization, 

crossover, and mutation controls.  There are also aspects of MOGA that have been customized from 

the single-objective genetic algorithm.  For example, the user can specify a fitness type, which can 

be a “domination count” or a “layered” fitness operator.  Both have been specifically designed to 

avoid problems with aggregating and scaling objective function values and transforming them into a 

single objective. Instead, the domination count fitness assessor works by ordering population 

members by the negative of the number of designs that dominate them. The values are negated in 

keeping with the convention that higher fitness is better. The layered rank fitness assessor works by 

assigning all non-dominated designs a layer of 0, then from what remains, assigning all the non-

dominated designs a layer of 1, and so on until all designs have been assigned a layer. Again, the 

values are negated for the higher-is-better fitness convention.  

 

MOGA also has some niche pressure operators. The job of a niche pressure operator is to encourage 

diversity along the Pareto frontier as the algorithm runs. This is typically accomplished by 

discouraging clustering of design points in the performance space. Currently, the niche pressure 



30 

operators available are the radial nicher and the distance nicher. The radial niche pressure applicator 

works by enforcing a minimum Euclidean distance between designs in the performance space at 

each generation.  The distance nicher enforces a minimum distance in each dimension. 

 

One drawback of the MOGA is that it is computationally expensive.  Typically, it is necessary for a 

genetic algorithm to “evolve” for hundreds to thousands of generations, with hundreds of population 

members each generation.  This means tens of thousands of function evaluations.  To overcome this 

limitation, we use a “surrogate-based MOGA.”    The basic idea is to construct a surrogate or meta-

model of the expensive simulator, and perform the MOGA on that.  However, instead of doing this 

just once, we do it iteratively.  That is, an initial surrogate is built based on a user-specified set of 

sample points, such as from a Latin Hypercube Sample.  This surrogate is then used by MOGA as 

the function evaluator in generating the Pareto set.  After MOGA has finished and identified the 

Pareto front, selected points along the Pareto front (these are surrogate points) are then evaluated by 

the “true” function evaluator.  These “true” function points are added to the original set of true 

points, and this “full” set is used to create another surrogate.  MOGA is run again, using the 

surrogate on the “full” set of points. This process is repeated until the Pareto front converges.  Note 

that the surrogate is not updated within MOGA run but between them. 

 

George Box is famous for saying that “All models are wrong but some are useful.”  A consequence 

of this is that no model can  perfectly predict all aspects of reality.  In the context of calibrating a 

model with multiple outputs of interest, there typically is no single set of calibration parameters that 

causes the model to match all outputs better than all other possible calibrations.  In other words, 

model calibration typically involves optimzing a set of competing objectives.  In this case, it may be 

desirable to use an ensemble of models approach when making predictions, where different 

calibrations of the same simulator may be considered to be different  “models.”  It is desirable that 

all calibrations used in the ensemble be Pareto optimal, however, not all Pareto optimal calibrations 

will be equally “useful” for prediction.  The most useful models will be the ones that perform 

reasonably well in all objectives and do very well in one or more objectives.  Additionally, one 

would like the calibrations to be fairly well spaced, or in the context of MOGA, niched. 

 

Given an  infinite computational budget, MOGA could conceptually determine all points or 

calibrations on the  Pareto frontier, i.e. all optimal trade-offs or compromises that could be made.  

However, most of these wouldn’t be useful, either because they do too poorly in one or more 

objectives, or because they are too similar to other useful calibrations.  After performing the initial 

1016 MOGA runs on the simulator we found that many were not useful for the first reason.  Since 

our compuational budget was finite,  we sought to discourage MOGA from spending effort finding 

Pareto optimal calibrations that did too poorly in any objective when performing the addition al 

surrogate-based-MOGA runs. 

 

The idea behind our modified approach was to combine physically related objectives (misfits 

between historical data and predictions of it) into a reduced set of 5 objectives in such a way as to 

penalize poor performance more than rewarding good performance.  The four objectives related to 

radiation, (LHFLX, LWCF, SWCF, and RADBAL) were normalized by the default values and 

summed with the largest normalized value being added twice.  The two objectives related to 

precipitation and humidity (PRECT and RELHUM) were likewise normalized and summed with 
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the larger counting twice.  Since the two temperature variables (T and TREFHT) were already had 

the same units they were not normalized, instead the reference values were subtracted off; they were 

then summed with the larger relative value being added twice.  Since wind speed, U, and sea 

pressure, PS, are rather different physical quantities their misfits were kept as separate objectives. 

 

The Gaussian Process surrogates predicted the 10 original objective function.  If any of the 

predictions were less than 90% of the lowest simulator  output, it was judged to be extrapolation 

error and the surrogate prediction was increased to the 90% value.  These 10 predictions of the 

objective functions were then combined into 5 objectives, as described in the previous paragraph, 

which were fed to the MOGA optimizer.  A small subset (approximately 8 parameter sets) of the 

surrogate-based-MOGA Pareto set that were predicted  to perform reasonably well in all 10 

objectives was selected from each cycle. 

 

In this work, we constructed an initial Gaussian process surrogate based on 1016 samples of CAM4.  

Then, we supplemented this with another 134 samples, based on 17 surrogate-based-MOGA cycles. 

  

6.2 Results 

The goal was to find a small Pareto optimal ensemble of parameter sets that performed well in all 10 

outputs.  This region is sometimes described as the “knee” of the Pareto frontier because the global 

shape of the frontier often bends most sharply here.  A pictorial example of the knee for a two-

dimensional Pareto front is shown in Figure 6.2 .  The knee in this schematic is portion of the Pareto 

frontier closest to the lower left corner because the goal is to minimize all objectives.  If the goal 

was to maximize all objectives, then the knee would be in the upper right corner instead.  



32 

 
Figure 6.2.  Example of the “knee” of the Pareto optimal set of solutions,  

where the goal is to minimize with respect to both objective #1 and objective #2. 

 

For the climate model, the knee region represents an ensemble of feasible calibrations which could 

be propagated forward 100 years to estimate the spread/range of possible futures.  We have nearly 

completed the forward propagation of such an ensemble with the atmosphere component of the 

CCSM4 climate model.  The six inputs and the “misfit” between the 10 outputs and calibration data 

for the knee region of the computed Pareto frontier are plotted in Figure 6.3.  This ensemble 
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contains 18 parameter sets computed by our surrogate-based-MOGA approach, numbered 1 through 

18.  The reference calibration is also plotted as the red square. 

 

 
 

Figure 6.3.  Results of Pareto Optimization for the 6 Inputs/10 Output CAM4 Problem. 

This figure displays the 18 Pareto optimal solutions along the “knee” of the Pareto surface. 

Top row shows 2D projections of inputs. Second and third row show the placement of the 18 

points in 2D projections of the “misfits” of the outputs. 

 

The first row of subplots in Figure 6.3 shows 2D projections of the 6 inputs for the knee ensemble. 

The second and third rows of subplots show 2D projections of the knee region of the 10D Pareto 

frontier.  This 10D Pareto optimal ensemble was post-processed to determine which parameter sets 
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would be on the Pareto frontier if only N output dimensions were considered, for when N is 

increased from 2 to 10 by increment of 1.  The order in which outputs dimensions, and parameter 

sets, were added is indicated by the color coding.  The outputs considered for the 2D Pareto 

ensemble are the misfits in latent heat flu (LHFLX) and radiation balance (RADBAL), which are 

colored in red (sets 1-3).  The misfit in relative humidity (RELHUM, sets 4-9) was added next and 

colored magenta. This was followed by misfits in precipitation (PRECT, blue, set 10); temperature 

at the reference height (TREFHT, cyan, set 11); temperature (T, green, sets 12 and 13); long 

wavelength cloud forcing (LWCF, black, sets 14 and 15); short wavelength cloud forcing (SWCF, 

orange, set 16); wind speed (U, grayish tan, this did not admit additional parameter sets); and sea 

pressure (PS, dark purple, sets 17 and 18).   

 

When only misfits in LHFLX and RADBAL are considered, the 2D Pareto frontier (sets 1-3 which 

are colored red) has the same knee shape as in Figure 6.2.   For higher dimensions, the knee shape is 

harder to discern from the 2D projections.  The parameter set indicated by the magenta 7 

outperformed the CCSM4 default calibration in 9 out of 10 of the objectives, and was very close in 

the 10th (U).  Note that the numbers are left aligned while the square is center aligned.  The 7th set 

had RHMINL=0.9067, RHMINH=0.8069, ALFA=0.10353, TAU=3471.0, CZERO=3.5e-3, and 

KE=1.0270e-6.   In the following discussion, we compare the performance of the solution of the 

nominal set of parameters to this MOGA Pareto optimal solution #7. 

 

As a demonstration of what can be done with the Pareto optimal sets, one can take the parameter 

sets and compare the global results in the future (representing an extrapolation) with the default 

parameters for CAM4.    We ran CAM4 with the nominal and MOGA solution #7 parameters for a  

105 year run.  We show the averages calculated over the last eleven years of this period, years 95-

105.  Figure 6.4 shows a comparison of the reference height temperature, averaged over June-July-

August (J-J-A) over years 95-105 given the default parameters (top) and the parameters from one of 

the MOGA solutions (e.g. solution 7, bottom).  Figure 6.5 shows a comparison of precipitation, also 

averaged over J-J-A over years 95-105 given the default parameters (top) and parameters from 

MOGA solution 7 (bottom).  Note in these comparisons that there are many similarities, but there 

are also differences.  The MOGA solution produces results that are closer to the data.  
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Figure 6.4.  Comparison of J-J-A average Reference Height Temperature (in degrees C) over 

Years 95-105, with Default parameters (top) and MOGA solution 7 (bottom). 
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Figure 6.5.  Comparison of J-J-A average Precipitation (in mm/day) at Year 75, with  

Default parameters (top) and MOGA solution 7 (bottom). 
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7. Summary and Next Steps 

We have performed several types of sensitivity and uncertainty analysis on CCSM with the CAM4 

atmosphere as a demonstration of methods that may be used on the CESM/CAM5 atmosphere 

model.  Specifically, we performed correlation analysis between inputs and outputs to identify 

important input parameters (Section 3.1) and we compared that with a more comprehensive 

sensitivity measure, variance-based decomposition (Section 3.2 and Sections 5.2.3).   We saw very 

consistent results between these methods, although the correlation was based on sampling and the 

variance-based analysis was based on a stochastic expansion constructed on a sparse grid.  

 

We identified ranges on the outputs given ranges on the inputs (Section 5.2.1).  We examined the 

use of surrogate models, including Gaussian processes, polynomial chaos expansions, and stochastic 

collocation (Section 4).  We discussed the use of sparse grid methods to reduce the number of 

simulation evaluations (Section 5.1) and we compared the overall uncertainties predicted by Latin 

Hypercube sampling and stochastic collocation through a comparison of cumulative density 

functions of the outputs (Section 5.2.1).  We demonstrated that these results are similar, especially 

for globally averaged quantities, and we further demonstrated that sparse grid methods can be used 

to calculate such CDFs with an order of magnitude reduction in samples (e.g. 97 vs. 1000 for a six 

dimensional input space).   We examined the decay of the coefficients in the stochastic expansion 

and how these may be used to indicate whether the statistical properties of the outputs quantities of 

interest can be approximated well by global polynomials.  We discussed what polynomial order is 

required to capture certain effects (Section 5.2.2).  We investigated calibration methods, specifically 

multi-objective methods which aim to find a set of Pareto optimal points that perform well in terms 

of matching to data from multiple responses (Section 6.1).  The MOGA results identified 

parameters which provide a good match according to several output metrics (Section 6.2).  

 

Overall, this is an initial study that demonstrates methods and tools that are currently available and 

applicable to climate modeling.  This study directly relates to the first objective of the CSSEF UQ 

area:  

1. Implement and test production-ready UQ tools in collaboration with test beds 

 

The study also demonstrates some techniques that are available in surrogate methods, sampling 

and sparse grid methods, and calibration.  We hope to continue and build upon this work 

demonstrating similar results with CAM5 in FY2012. 
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